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Abstract— We develop an auction framework for
privacy-preserving data aggregation in mobile crowdsensing,
where the platform plays the role as an auctioneer to recruit
workers for sensing tasks. The workers are allowed to report
noisy versions of their data for privacy protection; and the
platform selects workers by taking into account their sensing
capabilities to ensure the accuracy level of the aggregated result.
Observe that when moving the control of data privacy from the
data aggregator to the workers, the data aggregator has limited
market power in the sense that it can only partially control
the noise by judiciously choosing a subset of workers based
on workers’ privacy preferences. This introduces externalities
because the privacy of each worker depends on the total noise
in the aggregated result that in turn relies on which workers
are selected. Specifically, we first consider a privacy-passive
scenario where workers participate if their privacy loss can
be adequately compensated by the rewards. We explicitly
characterize the externalities and the hidden monotonicity
property of the problem, making it possible to design a truthful,
individually rational and computationally efficient incentive
mechanism. We then extend the results to a privacy-proactive
scenario where workers have individual requirements for their
perceivable data privacy levels. Our proposed mechanisms
for both scenarios can select a subset of workers to (nearly)
minimize the cost of purchasing their private sensing data
subject to the accuracy requirement of the aggregated result.
We validate the proposed scheme through theoretical analysis
as well as extensive simulations.
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I. INTRODUCTION

A. Motivation

MOBILE crowdsensing arises as a promising sensing
paradigm that leverages the sensing capability of

human-carried mobile devices to perform various sensing tasks
(e.g., healthcare, environment monitoring, indoor localization,
and smart transportation) [2]. By outsourcing the sensing tasks
to the public crowd, mobile crowdsensing systems can collect
fine-grained information effectively and efficiently. However,
any individual involved in a sensing task inevitably authorizes
the task agent a certain level of privilege to access her
sensing data which may be sensitive, thereby giving rise to the
privacy leakage when being released to an untrusted party. This
becomes a key challenge hindering individuals (workers) from
participation, other than the consumption of the limited system
resources (e.g., battery and computing power) of their mobile
devices. Therefore, the success of mobile crowdsensing hinges
closely upon the design of efficient incentive mechanisms to
stimulate workers’ participation.

Most of incentive mechanisms developed for mobile crowd-
sensing systems (e.g., [3]–[17]) take into account only work-
ers’ sensing costs. Only a few recent works consider workers’
privacy costs. However, in these works, either workers have
no control of their data privacy (e.g., the platform is assumed
to be trustworthy and fully responsible for protecting workers’
private data [10]), or the platform interacts with workers via
game-theoretic models (e.g., [18]), which may lead to an
inefficient equilibrium, i.e., the platform may not achieve a
desirable accuracy level of the aggregated result. To address
these issues, it is of paramount importance to develop novel
data aggregation schemes for mobile crowdsensing that not
only allow the platform to selectively recruit workers based
on their sensing quality,1 but also allow workers to report
their locally perturbed sensing data to the untrusted platform
for privacy protection. And a key question here is how to
achieve a good balance between workers’ data privacy and the
aggregation accuracy by the design of an incentive mechanism.

1The reliability of the sensing results depends on the total noise added by
the workers and the sensor quality of their mobile devices [10].
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Due to the existence of multiple Nash Equilibria (e.g., [18]),
game-theoretic models cannot guarantee a desirable accuracy
level of the data aggregation. Therefore, in this paper we take
an auction approach that includes the accuracy requirement
when designing the incentive mechanism. However, using
an auction-based approach to select privacy-sensitive workers
and collect their noisy sensing data has to tackle four major
challenges for the design of effective incentive mechanisms:

• Strategic Behavior. As workers are allowed to perturb
their data locally, if the noise is fully specified by the
workers themselves, it is possible that they would play
strategically by adding more noise into their sensing data
to enhance their data privacy. Moreover, workers may
manipulate their bids to maximize their own benefits,
leading to a higher cost of achieving a desirable aggrega-
tion accuracy. Therefore, a truthful incentive mechanism
is required, which integrates a carefully designed data
aggregation scheme that endues the platform certain
control over the workers’ data perturbation.

• Externalities. Compared with the existing works (e.g.,
[10]), where the platform adds noises into workers’
sensing data and workers’ data privacy only depends on
the noise added by the platform, the data privacy of
each worker in this paper depends on which workers
are selected to fulfill the task and how much noise the
selected workers generate (see Section II-C), which intro-
duces externalities. This makes the design of incentive
mechanism in this paper more challenging.

• Rational Behavior. In the crowdsensing modeling, work-
ers aim to maximize the difference between their rewards
from the platform and their data privacy loss. Conven-
tionally, a worker will opt into the system as long as
her privacy loss is fully compensated by the received
reward, which is called privacy-passive case in this paper.
However, in some cases workers’ behaviors can be more
proactive in the sense that they might have intrinsic
preferences on their data privacy levels. In such a privacy-
proactive case, a worker would refuse to participate if
the noise level determined by the mechanism is below
a certain customized threshold, regardless of how much
reward she could receive. Novel incentive mechanisms
are required to deal with workers with different kinds of
rational behaviors.

• Computational Complexity. To achieve a desirable accu-
racy level of the aggregated result in a cost-effective
manner, the platform needs to find an optimal subset
of workers to fulfill the sensing task. Because different
workers have different valuations of their data privacy and
workers’ data privacy is interdependent due to externali-
ties, it is of combinatorial nature to find an optimal subset
of workers to minimize the system cost while achieving
the desirable accuracy level. Therefore, a computationally
efficient mechanism is needed.

B. Summary of Main Contributions
In this paper, we develop an auction framework for

privacy-preserving data aggregation in mobile crowdsensing,
where the workers submit their bids to the platform and the

platform plays the role as an auctioneer to recruit workers for
a sensing task. When aggregating noisy data from workers,
the platform aims to minimize the cost of purchasing the
private sensing data, while achieving a desirable accuracy
level of the aggregated result. The externalities introduced by
the coupling of users’ differential privacy levels induce great
challenges to the mechanism design problem. The considera-
tion of an extended scenario with intrinsic workers’ privacy
requirements further differentiate our solution from others
in the literature. Our main contributions are summarized as
follows:

• Differentially Private Data Aggregation. To tackle the
challenge due to workers’ strategic behaviors, we pro-
pose a differentially private data aggregation scheme by
leveraging the celebrated concept of differential privacy.
The key idea is to carefully design the noise distribu-
tion for each worker based on the divisible property of
Laplace distribution, such that each worker can report
a privacy-preserving version of their data based on the
noise distribution suggested by the platform, who can
guarantee the differential privacy of each worker’s data.
By using this scheme, the platform can have certain
control over the aggregated noise level without knowing
workers’ true sensing data.

• Externalities. Under the proposed differentially private
data aggregation scheme, for different sets of workers,
different noise distributions will be designed for the
workers. In other words, the privacy of a worker would
change if the platform chooses different workers, which
introduces externalities. For the Laplace noise distribu-
tion, we explicitly characterize the externalities among
workers and the impact of each worker’s participation on
the privacy of other workers, which is accounted in the
incentive mechanism design.

• Privacy-Accuracy Tradeoff. To maintain the accuracy of
the aggregated result, the platform would reward workers
more if the reported data is of higher accuracy (i.e.,
less noise is added). Clearly, there is a tradeoff between
the (privacy) cost and the accuracy. We characterize the
tradeoff between workers’ data privacy and the accuracy
of the aggregated result based on the concept of differ-
ential privacy. The accuracy of the aggregated result is
characterized in terms of the distortion, due to the noise
added by workers.

• Differentially Private Data Auction. Based on the pro-
posed differentially private data aggregation, the design of
the incentive mechanism boils down to solving a privacy
auction of allocating the sensing task to a set of workers
that can minimize the total payment to the workers,
subject to the accuracy constraint of the aggregated result.
We show that it is NP-hard to find the optimal solution to
this problem. By exploring the problem structure, we dis-
cover the hidden monotonicity property of the problem
and determine the critical bid of workers. Based on these
findings, we propose a computationally efficient differ-
entially private data auction scheme despite the combi-
natorial nature of the problem. Moreover, we show that
the proposed differentially private data auction scheme
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is truthful, individually rational and close to the optimal
solution. The performance of the proposed scheme is
evaluated via extensive simulations.

• Intrinsic Privacy Requirements. We make an extension
of the basic differentially private data auction to deal
with the case with privacy-proactive workers. Specifically,
we incorporate workers’ intrinsic privacy preference on
their data privacy levels to the incentive mechanism. Each
worker would report her lowest acceptable data privacy
level together with her unit privacy cost to the platform.
An amended truthful auction mechanism is provided in
Section IV, which takes the two-dimensional bids of
workers as input.

C. Related Work

Incentive mechanism design for mobile crowdsensing sys-
tems has recently garnered much attention (e.g., [3]–[13],
[15], [16]). Different models (e.g., auction [3]–[11] and
game-theoretic models [12], [13], [15], [16]) have been intro-
duced to design incentive mechanisms with different objec-
tives, including social welfare maximization (e.g., [9], [15],
[19]), cost or payment minimization (e.g., [4], [10]), and
platform’s profit maximization (e.g., [11], [13]). Most of the
existing works (e.g., [3]–[9]) consider only the sensing costs
of the participants.

Recently, there has been much attention paid to data privacy
(e.g., [10], [11], [17], [18], [20]–[22]). Most of these works
(e.g., [10], [11], [20]–[22]) assume that the platform (i.e.,
the data collector) is trustworthy and the true data is reported
to the platform, where workers have no control of their data
privacy. Very recent works [18], [23] allow the workers to
protect their data privacy by reporting noisy data and study
how to trade private data in game-theoretic models, which,
however, may result in an inefficient equilibrium, i.e., the accu-
racy of the aggregated result cannot be guaranteed. To address
these issues, this paper proposes a novel auction framework
for mobile crowdsensing, where the workers can protect their
data privacy by adding noise based on the noise distributions
determined through the proposed data aggregation scheme.
Specifically, we consider frugal mechanism design [24], [25]
which aims to minimize the total payment of the buyer (the
platform) for procuring a feasible set of workers whose aggre-
gated data achieves a desirable accuracy level. We caution that,
however, the threshold-based mechanism for frugal mechanism
[24], [26] cannot be applied directly to the problem under
consideration due to the effect of externalities, which makes
the mechanism design more challenging. 2

Although the control of data privacy is moved from the
platform side to the workers side by allowing workers to
conduct local noise injection, the platform still has the power
to specify the noise injection level for each selected worker [1].
In order to grant workers more control of their data privacy
levels, we further extend the discussion to the scenario where
privacy-proactive workers can impose restrictions on their
least acceptable noise levels. We devise an efficient truthful
incentive mechanism for this scenario where workers’ bids

2Some of our preliminary results have been presented in [1].

Fig. 1. An auction framework for privacy-preserving data aggregation.

are of two-dimension, including their bids for the unit privacy
cost and their intrinsic requirements on their privacy levels.
Pre-processing for selecting feasible worker set is also needed
at the beginning stage for winner determination. These differ-
entiates our approach from the existing mechanism designs on
private data aggregation in mobile crowdsensing [9]–[11].

The rest of the paper is organized as follows. In Section II,
we describe the privacy-preserving data aggregation frame-
work for mobile crowdsensing systems. In Section III, we pro-
pose the incentive mechanism and analyze its properties for the
privacy-passive scenario. In Section IV, we extend the study to
the privacy-proactive scenario where workers impose intrinsic
requirement on their data privacy levels. In Section V, we eval-
uate the performance of the proposed incentive mechanism.
The paper is concluded in Section VI.

II. PRIVACY-PRESERVING DATA AGGREGATION FOR

MOBILE CROWDSENSING

A. System Overview

Consider a mobile crowdsensing system consisting of a
centralized platform A, a task agent T and a set of partic-
ipating workers N ! {1, · · · , N}, as illustrated in Fig. 1.
The task requires workers to report to the platform their local
sensing data of a specific object or phenomenon (e.g., spec-
trum sensing and environmental monitoring).3 To enhance the
reliability of the result, the platform will aggregate the sensing
data, as the reliability of each worker’s sensing data may be
different due to different sensor qualities [10]. Different from
the existing works on auctions in mobile crowdsensing systems
(e.g., [3]–[13], [15]–[17]), we allow each individual to report
a privacy-preserving version of her data to protect her own
data privacy [18].

Specifically, the workflow (see Fig. 1) of the proposed
privacy-preserving data aggregation is as follows:

• First, the task agent posts a task in the crowdsensing
platform, which then announces the task to a set of N
workers, denoted as N (step 1).

• Incentive Mechanism. Then the platform runs an auction
to recruit workers. The workers first submit their bids to
the platform (step 2), where the bids reflect the personal
information of workers such as the valuation of privacy
loss and the lowest acceptable data privacy protection
level of each worker (see Section II-B). Based on the

3In this work, we assume that all the N workers are in connection with the
platform and active in the crowdsensing system all the time.
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collected bids, the platform determines the winners (i.e.,
the workers to fulfill the task), and the corresponding
payments to the winners (steps 3 and 4).

• Data Aggregation. Next, the platform sends the data
reporting requirements to the winners and allows the
winners to report a privacy-preserving version of their
sensing data (steps 5 and 6).

• Finally, the platform releases the aggregated result to the
task agent (step 7).

B. Crowdsensing Auction Model

In the crowdsensing system, the platform plays the role as an
auctioneer who recruits workers to complete the sensing task
and then aggregates the sensing data. As the bidders, workers
provide their private sensing data to the platform in return for
payments that compensate their privacy loss. In the following,
we introduce the privacy cost model, the workers model and
the platform model, followed by the design objectives.

1) Platform Model: At the beginning of the auction,
the platform (auctioneer) would elicit bids (defined in
Section II-B.2) from the workers. By running a carefully
designed winner determination procedure and a payment deter-
mination procedure, the platform outputs an allocation result
(x,p), in which x = (x1, · · · , xN ) indicates the participants
and p = (p1, · · · , pN ) indicates the amount of payments to
the participants. Specifically, xi ∈ {0, 1} denotes if worker i
is selected to execute the task: xi = 1 means that worker i
is selected (i.e., winner) and xi = 0, otherwise. Accordingly,
we define S as the winner set with S workers. For each worker
i ∈ N , the platform will pay pi ≥ 0 amount of reward to col-
lect her private data, and use the data in a differentially private
manner after the data aggregation (see Section II-C). The total
payment that the platform spent can be expressed as

∑
i∈N pi.

We denote the data aggregation accuracy requirement for the
sensing task as ∆, which will be defined later in Section III.

2) Worker Model: Next, we introduce the privacy cost
model, the bidding model, and the utility model for the
workers.

Privacy Cost. In our model, workers incur privacy cost
when providing their private sensing data to the platform.
Such privacy cost is quantified using differential privacy [27].
We let vi > 0 denote worker i’s valuation of unit privacy
cost. Intuitively, a larger value of vi indicates that worker i
has a higher intrinsic valuation of privacy loss by revealing
her sensing data. We assume that all unit privacy costs are
unknown to the platform or to the other workers. We let εi

denote worker i’s data privacy level (see formal definition in
Section II-C), which is specified by the platform and closely
related to the noise level for data perturbation. Specifically,
the smaller the value of εi, the larger the noise worker i is
allowed to add on her data, and thus the higher the data privacy
level. The privacy cost ci of worker i can be given by4

ci = viεi(x). (1)

4According to the utility theoretic characterization of differential privacy
[22], the privacy cost can be modeled as the difference between the utility
with true data vector and the utility with perturbed data vector, which is a
linear function of worker’s privacy εi.

Note that this cost function has been used in many existing
works (e.g., [10], [11], [21], [22]). However, the worker’s
privacy εi in (1) in this paper is a function of x and depends
on not only the noise added by herself but also the total
noise in the aggregated result, which introduces externalities
(see Section II-C). This is a key difference between this work
and other related works in mobile crowdsensing (e.g., [10]),
where the privacy cost of a worker purely depends on her own
participation.

Bidding Model. We assume that each worker’s unit privacy
cost is independent to her private data, so that she would
not reveal private information during the bidding process.
Nevertheless, a worker may not report the true value of her
unit privacy cost to gain more benefit. We differentiate the
bidding model for the privacy-passive scenario and privacy-
proactive scenario due to the different roles workers play
during determination of their data privacy levels. In privacy-
passive scenario, each worker i ∈ N simply report her unit
privacy cost as bid bi, which could be different from the
true value vi. Let b = (b1, · · · , bN ) denote the vector of
bids submitted by the workers and b−i denote the bid vector
without worker i’s bid. The platform runs the auction with the
outcome specifying the data privacy level εi of each worker
i. Worker i would passively accept the data privacy level and
conduct local noise injection accordingly (see Section II-C).

In the privacy-proactive scenario, we assume each worker
i ∈ N possesses an intrinsic requirement on her data privacy
level such that she would drop out if εi assigned by the
platform is greater than a customized threshold Ei. To impose
such a constraint, worker i would report a bid tuple (bi, gi)
for her unit privacy cost vi and her requirement for the data
privacy level Ei, respectively.

Worker’s Utility. In our crowdsensing framework, each
worker reports the noisy data to the platform in return for
the payment pi that compensates her privacy cost ci. Workers
are assumed to be selfish and strategic, in order to maximize
their own utilities. Based on the privacy cost (1), the utility ui

of a privacy-passive worker i can be given as,

ui(bi,b−i) = pi(bi,b−i) − ci = pi(bi,b−i) − viεi(x), (2)

For a privacy-proactive worker, her utility is,

ui(bi, gi,b−i,d−i)

=

{
pi(bi, gi,b−i,g−i) − viεi(x), if εi(x) ≤ gi,

−∞, Otherwise.
(3)

where ui and pi are functions of the bid vector, given εi and
x. Here it holds that for a non-participant i ∈ N (i.e., xi =
εi = pi = 0), her utility turns out to be zero. Notice that we do
not explicitly include the sensing cost of carrying out the task
into the utility function (2) in order to ease the presentation.
Meanwhile, our results in this paper can be easily extended
to incorporate the sensing cost as in [16], [28]. For example,
similar to [16], letting si denote the sensing cost of user i,
we can modify the individual utility of user i as ui = pi −
si − εivi, and define p′i = pi − si to incorporate the sensing
cost in the reward. Therefore, our results can be extended to
this case.
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3) Design Objectives: We aim to design an auction based
allocation mechanism that minimizes the total payment to
the workers with satisfactory data aggregation accuracy,
by designing an incentive mechanism with the following
desirable properties:

• Truthfulness: Each worker i can maximize her
utility by truthfully bidding her privacy valuation,
i.e., ui(vi,b−i) ≥ ui(bi,b−i) for any b.

• Individual Rationality: Each worker i ∈ N can obtain a
non-negative utility. According to (2) and (3), it implies
that the payment pi and the privacy level εi(x) are
determined such that ui = pi − ci ≥ 0; moreover, for
a privacy-proactive worker i, the constraint εi(x) ≤ gi

needs to be further satisfied.
• Cost Minimization: The mechanism can minimize the

total payment to the workers.
• Computational Efficiency: The solution (x,p) can be

computed in polynomial time.

C. Differentially Private Data Aggregation

In both the privacy-passive case and the privacy-proactive
case, to protect the data privacy, each winner i will report a
privacy-preserving version d̂i of her data di by adding random
noise ni. Without loss of generality, we assume that all the
sensing data di are normalized values within the range [0, 1].
In this paper, we consider a weighted aggregation operation
f to calculate the aggregated result r based on workers’ data.
Let d be the vector of workers’ data. The aggregated result r
can be written as

r = f(d) =
∑

i∈N
wi(di + ni)xi =

∑

i∈S
wi(di + ni), (4)

where wi > 0 is the normalized weight of worker i such
that the sum of these weights is equal to 1. Similar to [10],
[29], [30], the weighted aggregation is to capture the effect
of workers’ diverse skill levels on the calculation of the
aggregated results. Intuitively, higher weights will be assigned
to workers whose sensing data are more likely to be close to
the ground truths. This makes the aggregated results closer to
the data provided by more reliable workers, which have been
used by many state-of-the-art data aggregation methods [10],
[29], [30]. The choice of weights can be based on workers’
skill levels as in [10], which is a priori known to the platform
and the workers.

In this paper, we quantify the privacy loss incurred in data
aggregation based on the celebrated concept of differential
privacy [27], and the proposed differentially private data
aggregation is defined as follows.

Definition 1 (Differentially Private Data Aggregation): An
aggregation operation f : [0, 1]S → R is εi-differentially
private with respect to worker i, if for any pair of neighboring
vectors d and d(i) differing only in the ith worker’s data and
any set of aggregation results O ⊆ Range(f), the following
inequality holds:

Pr[f(d) ∈ O] ≤ exp(εi)Pr[f(d(i)) ∈ O], (5)

with εi being a positive parameter quantifying the data privacy
level of worker i.

It follows that worker i’s data is used in an εi-differentially
private manner under operation f . This definition differs
slightly from the definition in [27], which is stated in terms
of the worst-case privacy (i.e., ε-differentially private, where
ε = supi εi).

Given the aggregation operation f , a well-known method
to provide differential privacy is to add random noise drawn
from a Laplace distribution to this function [27]. As we allow
each worker to add noise by themselves, we need to carefully
design the noise distribution for each worker such that the sum
of the noises is equivalent to the random noise drawn from a
Laplace distribution, i.e., the aggregated noise n =

∑
i∈S wini

follows the Laplace distribution.
Proposition 1: For the aggregation operation f in (4),

define εi = si(f)/σ, where si(f) = maxd,d(i)∈[0,1]S |f(d) −
f(d(i))| is the sensitivity of f to the ith entry di and σ is
the parameter of the Laplace distribution. The aggregation
operation f is εi-differentially private with respect to worker
i, if ni = G1(S, σ/wi) − G2(S, σ/wi) for all i ∈ S
are independent, where G1(S, σ/wi) and G2(S, σ/wi) are
i.i.d. random variables following gamma distribution with pdf
g(x; S, σ/wi) = 1

Γ(1/S) (
wi
σ ) 1

S x
1
S −1e

wix
σ .

Proof: To show Proposition 1, it suffices to show that the
aggregated noise follows the Laplace distribution. Based on
the divisible property of Laplace distribution [31], the Laplace
distribution is divisible and can be constructed as the sum
of i.i.d. gamma distributions. Based on the scaling law of
gamma distribution, wini = G1(S, σ) − G2(S, σ). Therefore,
we have

∑

i∈S
wini =

∑

i∈S
(G1(S, σ) − G2(S, σ)) = L(σ), (6)

where the second equality follows from the divisible property
of Laplace distribution [31], which concludes the proof. "

Based on Proposition 1, if the noise distribution of each
worker is carefully designed, the aggregation operation f in (4)
is εi-differentially private with respect to worker i. Therefore,
we propose the data aggregation mechanism in Algorithm 1.
In Algorithm 1, the platform only informs the workers the
values of S and σ/wi, based on which each worker generates a
random noise and reports d̂i back to the platform. Specifically,
the quantity σ/wi characterizes the data privacy level of
worker i (see Proposition 2 in Section II-D).

Remarks:

Algorithm 1 Differentially Private Data Aggregation
1: Input: Worker set S, Number of workers S, weight of each

worker wi, ∀i ∈ S, Laplace distribution parameter σ
2: Output: Aggregated result r.
3: For each worker i ∈ S, the platform informs the values of

parameters S and σ
wi

.
4: Each worker generates a random noise ni based on the

distribution of G1(S, σ/wi) − G2(S, σ/wi), and then
reports d̂i = di + ni to the platform.

5: The platform aggregates the data from the workers
using (4) and releases the aggregated result r to the task
agent.
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• Note that in the privacy-passive case, workers will pas-
sively inject random noise parameterized by the data
privacy level informed by the platform. In contrast,
in the privacy-proactive case, workers have customized
requirements on their data privacy levels, and the noise
parameters informed by the platform will satisfy their
data privacy requirements (see detailed discussion in
Section IV).

• Note that in the proposed data aggregation algorithm,
the platform does not know the true value of worker’s
data, but a privacy-preserving version of her data, which
is generated using the noise distributions that the workers
agree with in the proposed auction framework. By doing
so, other than protecting workers’ data privacy, the pro-
posed algorithm can also prevent workers from adding
arbitrarily large noise into their sensing data, in which
case the aggregated result becomes useless. For the
platform, it is easy to check if the distribution of each
worker’s reports follows the assigned noise distribution,
based on which reputation management techniques can
applied to recognize the dishonest workers [32]. Also,
the client-side APP can be designed to enforce the locally
generated noise following the distribution regularized by
the platform, to address the moral hazard issue.

• Also note that for different sets of winners, different noise
distributions will be assigned to the winners. In other
words, the privacy of each winner depends on the selec-
tion of the winner set, which introduces the externalities.
This makes the design of incentive mechanism in this
paper different from the existing works on auctions in
mobile crowdsensing systems.

D. Privacy Versus Accuracy

When allowing workers to report noisy data, the noise added
into the aggregated result would inevitably reduce the accuracy
of the result. From Proposition 1, we observe that εi depends
on the value of σ. The higher the value of σ, the smaller εi, and
hence, the better the privacy guarantee. However, the higher
the value of σ, the lower the accuracy of the aggregated result.
Clearly, there is a natural trade-off between workers’ data
privacy and the accuracy of the aggregated result.

To characterize the accuracy, we introduce the notion of
distortion between two aggregation functions: one using all the
workers’ data with no noise and the other using the selected
workers’ data with noise (i.e., the aggregated result r in (4)).
As the platform needs to pay for the workers’ data, it would
be costly to get all workers’ data and workers would also add
noise to protect their data privacy. Therefore, we can treat
the aggregation of all the workers’ data with no noise as the
benchmark.

Definition 2 (Distortion): Given the vector x, the distortion
δ(x) is defined as

δ(x) = max
d∈[0,1]N

E[(
∑

i∈N
widi −

∑

i∈N
wi(di + ni)xi)2]. (7)

In Definition 2, the distortion is defined as the maximum of
expected deviation from the true result for any sensing data

reported by the workers. It is clear that the distortion depends
on the set of workers fulfilling the task and the noise added
into the data. Their dependence is quantified by the following
proposition.

Proposition 2 (Privacy versus Distortion): Given xi and
wi for all the workers, under the aggregation function (4),
the privacy of each worker and the distortion of the aggregated
result can be given as

εi =
wixi

σ
, ∀i ∈ N (8)

δ(x) = (
∑

i∈N
wi(1 − xi))2 + 2σ2. (9)

Proof: Given xi and wi under the aggregation function (4),
we have

si(f) = max
d,d(i)∈[0,1]S

|wi(di − d′i)xi| = wixi.

Therefore, we have εi = si(f)
σ = wixi

σ . For the distortion,
we have

δ(x) = max
d∈[0,1]N

E[(
∑

i∈N
widi −

∑

i∈N
wi(di + ni)xi)2]

(a)
= max

d∈[0,1]N
E[(

∑

i∈N
widi(1 − xi) −

∑

i∈S
wini)2]

(b)
= max

d∈[0,1]N
(
∑

i∈N
widi(1 − xi))2 + 2σ2

= (
∑

i∈N
wi(1 − xi))2 + 2σ2,

where (a) follows from equation (4) that
∑

i∈N winixi =∑
i∈S wini, and (b) follows from Proposition 1 that∑
i∈S wini is a Laplace random variable with zero mean and

2σ2 variance. "
From Proposition 2, it is clear that given σ, the more

workers fulfilling the task, the less the distortion; given the set
of selected workers S, the higher the value of σ, the smaller
εi (i.e., better privacy) and the worse the distortion. Follow-
ing [21], we call the aggregated operation f in (4) canonical
if the Laplace noise added by workers has a parameter of the
following form

σ = σ(x) =
∑

i∈N
wi(1 − xi). (10)

Based on (10), the privacy of each worker and the distortion
of the aggregated result can be given as

εi(x) =
wixi∑

i∈N wi(1 − xi)
, ∀i ∈ N (11)

δ(x) = 3(
∑

i∈N
wi(1 − xi))2. (12)

Eqs. (11) and (12) introduce externalities among the work-
ers such that the data privacy of worker i depends on other
workers’ participations. Specifically, the more participants,
the less the distortion but the larger εi (i.e., worse privacy).
Intuitively, as the same sensing task is fulfilled by all the
workers, the more participants, the more easily the true data
can be figured out (i.e., the more privacy loss). Moreover,
we need to carefully choose the workers as they have different
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skill levels (i.e., wi) that may contribute differently to the
distortion. Further, the costs of choosing different workers are
different. Therefore, it is a challenging task to find a suitable
set of workers to fulfill the sensing task.

III. INCENTIVE MECHANISM: THE CASE WITH

PRIVACY-PASSIVE WORKERS

In this section, we study the incentive mechanism design
for data crowdsensing in the privacy-passive scenario where
workers have no intrinsic requirements on their data privacy
level. In other words, they would passively participate as long
as their privacy loss are compensated by the reward from the
platform.

A. Mathematical Formulation

The goal of crowdsensing platform is to minimize the
total payment to the workers such that the accuracy of the
aggregated result is above certain predetermined threshold
(i.e., the distortion is below a threshold ∆). Specifically, this
problem can be formulated as

minimize
∑

i∈N
pi

subject to pi ≥ biεi(x), ∀i ∈ N , (Individual rationality)
δ(x) ≤ ∆, (Accuracy requirement)
xi ∈ {0, 1}, ∀i ∈ N . (13)

In problem (13), the decision variables are {xi}i∈N and
{pi}i∈N , and the individual rationality constraints ensure
that each worker can obtain non-negative utility. For the
accuracy requirement constraint, the threshold will generally
determine the total payment and the data privacy levels
of the workers. With a low threshold (i.e., high accuracy),
the platform would pay more to the workers to obtain less
noisy data (i.e., worse privacy for the workers). Note that
different from most works on crowdsensing, problem (13)
considers the externalities among workers such that workers’
data privacy depends on each other, which has been discussed
in Sections II-C and II-D. Due to the externalities, designing
an incentive mechanism to solve (13) is a challenging task.
Theorem 1 shows that problem (13) is NP-hard.

Theorem 1: The crowdsensing auction problem (13) is
NP-hard.

To show Theorem 1, we first establish the equivalence
between problem (13) and the following problem:

minimize
∑

i∈N
biεi(x)

subject to
∑

i∈N
wixi ≥ W,

xi ∈ {0, 1}, ∀i ∈ N , (14)

where W =
∑

i∈N wi − (∆/3)1/2.
Lemma 1: The optimal allocation x∗ for problem (13) is

the same as that for problem (14).
Proof: Observe that to minimize (13), pi is always equal to

biεi(x∗). Therefore, the inequalities for individual rationality
are tight. In other words, minimizing

∑
i∈N pi is equivalent to

Algorithm 2 Differentially Private Data Auction: Winner
Determination
1: Input: worker set N , weight of each worker wi, ∀i ∈ N ,

bid of each worker bi, ∀i ∈ N .
2: Output: winner set S.
3: Sort the set of workers in the increasing order of wibi.
4: Find the target cost C by solving problem (16).
5: Let k = 1, x1 = 1 and xi = 0, ∀i = 2, . . . , N .
6: Set S = {1} and compute C′ = b1ε1(x).
7: while C′ < C do \\ Find the set of winners
8: k = k + 1.
9: Set xk = 1 and S = S ∪ {k}.

10: C′ =
∑k

i=1 biεi(x).
11: end while
12: return S.

Algorithm 3 Differentially Private Data Auction: Payment
Determination
1: Input: worker set N , weight of each worker wi, ∀i ∈ N ,

bid of each worker bi, ∀i ∈ N , winner set S.
2: Output: payments p.
3: Set p = (0, . . . , 0) and bc = bk+1, where k is the worker’s

index in S with the largest bid.
4: for each i ∈ S do \\ Find the critical bid
5: Run Algorithm 2 on N \ {i} to get the winner set S′

with k′ being the worker’s index in S′ with the largest
bid.

6: bc = min{bc, bk′+1}.
7: end for
8: For each i ∈ S, pi = bcwi

i∈N\S wi
.

9: return p.

minimizing
∑

i∈N biεi(x). Next, we can rewrite the constraint
δ(x) ≤ ∆ as

∑
i∈N wixi ≥ W after some algebra, which

concludes the proof. "
It is easy to show that problem (14) is reducible to a

reverse binary knapsack problem, which is NP-hard. Based
on Lemma 1, Theorem 1 follows.

B. Mechanism Design

From Theorem 1, problem (13) is computationally hard
when the cardinality of N is large. To tackle this chal-
lenge, we propose a computationally efficient mechanism
(see Algorithms 2 and 3), namely differentially private data
auction (DPDA), which is truthful and individually rational
and can find the set of winners close to the optimal allocation
x∗ for problem (13), as discussed in Section III-C.

In Algorithm 2, the idea is to first find the solution C of
the fractional relaxation of problem (14), i.e.,

minimize
∑

i∈N
biεi(x)

subject to
∑

i∈N
wixi ≥ W,

0 ≤ xi ≤ 1, ∀i ∈ N , (15)
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which is chosen as the target cost. Based on the target cost C,
the set of winners can be determined by choosing the smallest
set of workers with the total cost greater than or equal to C.
Because problem (15) is less constrained than problem (14)
and thus C is a lower bound of the solution to problem (14).
To find this smallest set of workers, we explore the solution
structure of problem (15). Based on the relationship between
problem (15) and problem (14), we discover the property of
monotonicity (see the proof of Theorem 4 in the supplementary
material), based on which the set of winners can be found
by gradually adding the workers into the winner set until the
total cost is greater than or equal to the target cost (see the
main loop (line 6-10) in Algorithm 2). Essentially, we want to
find the smallest k such that

∑
i≤k biwi/(

∑
i≥k+1 wi) ≥ C,

i.e., k = min{j :
∑

i≤j biwi/(
∑

i≥j+1 wi) ≥ C, ∀j ∈ N},
and all the workers with i ≤ k are in the winner set. Note
that due to the externalities, this monotonicity property is
hidden in problem (14), which makes our problem more
technically challenging than the existing auction works on
mobile crowdsensing.

In Algorithm 3, we leverage the critical value approach in
Auction theory [26]. The idea is to determine the critical bid
bc such that a worker will not be selected if her bid is larger
than or equal to bc. Specifically, we first remove worker i from
the worker set N and find out the smallest bid by which the
worker would lose the auction (line 5 in Algorithm 3). Note
that the bids are ordered in the increasing order. The critical
bid is determined based on the supremum of all these bids
(line 6 in Algorithm 3). Using this critical bid, we determine
the payment for each winner based on their weights (line 8 in
Algorithm 3). From the analysis of DPDA in Section III-C,
we can see that the solution given by Algorithms 2 and 3 is
feasible and close to the optimal solution to problem (13).

For the complexity of Algorithm 2, we need to solve
C for problem (15), which is a linear fractional program.
To efficiently solve C, we can transform problem (15) into
a linear program based on the following lemma.

Lemma 2: Problem (15) is equivalent to the following lin-
ear program:

minimize
∑

i∈N
biwiyi

subject to
∑

i∈N
wiyi ≥ Wz,

0 ≤ yi ≤ z, ∀i ∈ N ,∑

i∈N
wiz −

∑

i∈N
wiyi = 1. (16)

Proof: To show the equivalence, we will show that any
feasible point in problem (15) is also feasible in problem (16)
with the same objective value and vice versa. We note that if x
is feasible in problem (15), then yi = xi

i∈N wi(1−xi)
, ∀i ∈ N

and z = 1

i∈N wi(1−xi)
are feasible in problem (16), yielding

the same objective value
∑

i∈N biwiyi =
∑

i∈N biεi(x).
It follows that the optimal value of problem (15) is greater
than or equal to the optimal value of problem (16). Conversely,
note that z > 0 in problem (16). If yi and z are feasible
in problem (16), then xi = yi/z is feasible in problem (15)

with the same objective value
∑

i∈N biεi(x) =
∑

i∈N biwiyi.
Therefore, the optimal value of problem (15) is less than
or equal to the optimal value of problem (16). Therefore,
problem (15) is equivalent to problem (16). "

Based on Lemma 2, we can solve C by solving a lin-
ear program (16). Note that the computational complexity
of Algorithm 2 consists of two parts: solving a linear pro-
gram (16) (line 3) and finding the set of winners (line 6-10).
To solve (16) efficiently, we can use many solvers for linear
programs, e.g., CPLEX [33], which can solve the linear
program (16) in polynomial time [34]. To find the set of
winners, it takes at most O(N) time in the worst case.
Therefore, Algorithm 2 can determine the winner set for
problem (13) in polynomial time. For Algorithm 3, it needs to
run Algorithm 2 for each winner, and the worst case is to run
N times, which means that it is also solvable in polynomial
time.

C. Analysis of DPDA

In this section, we will prove that DPDA is truthful,
individually rational, and α-approximation with respect to the
optimal cost.

First, we analyze the truthfulness of DPDA.
Theorem 2: DPDA is truthful.

Proof: To show DPDA is truthful, it is sufficient to show
that users cannot improve their utilities by deviating their bids
from their true valuations. Note that in DPDA, the winner is
determined by the ranking of her bid in the set N and the
higher the ranking, the lower the chance of being selected.
Moreover, the critical bid determined by Algorithm 3 does
not depend on the value of winners’ bids. In what follows,
we discuss the cases with an untruthful bid b̃i of worker i.

• Overbidding b̃i > vi. In this case, the ranking of worker i
may move backward. If she could win the auction by
truthfully bidding vi and she remains in the winner set by
overbidding, then her utility will remain the same because
the critical bid bc determined by Algorithm 3 will remain
the same; if she loses the auction by overbidding, her
utility will be zero. If she loses the auction by truthfully
bidding, then she will still lose by overbidding. In either
case, worker i cannot improve her utility.

• Underbidding b̃i < vi. In this case, the ranking of
worker i may move forward in the group. If she could
win the auction by truthfully bidding vi, then her utility
cannot be improved since she must still remain in the
winner set and the critical bid remains the same. If she
loses the auction by truthfully bidding but underbidding
helps her become a winner, her utility would be ui =
(bc−vi)wi

i∈N\S wi
. Since she is not originally in the winner set,

it means that vi ≥ bc, which leads to her utility ui ≤ 0.
Therefore, DPDA is truthful. "

Next, we analyze the individual rationality of DPDA.
Theorem 3: DPDA is individually rational.

Proof: For each worker in the winner set, we have

pi =
bcwi∑

i∈N\S wi
≥ biwi∑

i∈N\S wi
= ci,
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since bc ≥ bi, ∀i ∈ S. For all workers who lose the auction,
pi−ci = 0. Therefore, we have pi−ci ≥ 0 for all the workers,
i.e., DPDA is individually rational. "

Then, we analyze the approximation ratio of DPDA. The
idea is to first characterize the optimal solution to prob-
lem (15), which, however, is still challenging, due to the
externalities. To tackle this challenge, we explore the structure
of problem (15) and discover the hidden monotonicity property
after transforming problem (15) into an equivalent problem.
Based on this finding, we show that DPDA satisfies the accu-
racy requirement of problem (13) and derive the approximation
ratio of DPDA by using the relationship between the outputs
of DPDA and the optimal solution to problem (13). The results
are summarized in the following theorem.

Theorem 4: DPDA satisfies the accuracy requirement
(i.e., δ(x) ≤ ∆) and is α-approximation with respect to the
optimal cost, where α = (bk+C)wk

C i≥k wi− i≤k−1 biwi
≥ 1.

We next refine the approximation ratio α under the follow-
ing “small bidders” assumption.

Assumption 1: In a “small bidders” scenario where the
workers’ bids are generally much smaller than the target
payment C computed by solving (16), it is satisfied that
C > βbmax with bmax = maxi bi, and β > N being a large
positive constant.

Remarks: The definition of the “small bidder” in Assump-
tion 1 is used in the literature (e.g., [35]). Such an assumption
is applicable to practical crowdsensing applications, such as
consumer surveys, product reviews, and voting events, all of
which involve a large number of workers, with the individual
cost of each worker much smaller compared to the total budget
of the platform.

Corollary 1: Under Assumption 1, DPDA is
α′-approximation with respect to the optimal cost, where
α′ = 1

1−k/(β+1) ≥ 1.
The proof of Theorem 4 and Corollary 1 are provided in

the supplementary material. This result showcases a concrete
scenario that the more significant the “small bidders” effect,
the larger the value of β, and therefore the better will the
performance of our DPDA algorithm be. The numerical results
in Section V (see Fig. 5) further validate the Corollary 1.

IV. INCENTIVE MECHANISM: THE CASE WITH

PRIVACY-PROACTIVE WORKERS

In the model above, workers are allowed to inject noise over
their sensing data locally to avoid revealing private information
to the untrustworthy platform. However, since the noise level
is specified by the platform, workers lose control to some
extent on determining the exact privacy protection level of
her data. In this section, we consider the scenario where
privacy-proactive workers possess intrinsic requirements on
the data privacy levels assigned by the platform. We first
present the problem formulation, and then present an auction
mechanism developed based on DPDA, followed by the per-
formance analysis.

A. Problem Formulation

Along the same line as in Section III, we aim to devise a
mechanism that minimizes platform’s total payment subject to

the accuracy requirement for the aggregated result. The incen-
tive mechanism outcome should also satisfy workers’ privacy
level requirements in addition to other properties including
truthfulness, individual rationality and computational effi-
ciency. We reformulate the optimization problem (13) as
follows:

minimize
∑

i∈N
pi

subject to pi ≥ biεi(x), ∀i ∈ N , (Individual rationality)
δ(x) ≤ ∆, (Accuracy requirement)
εi(x) ≤ gi, ∀i ∈ N , (Privacy level requirement)
xi ∈ {0, 1}, ∀i ∈ N . (17)

In our study, we made the following mild assumptions to
ensure the problem (17) is feasible.

Assumption 2: Given the bid gi and weight wi of each
worker i ∈ N , the platform determines the accuracy require-
ment ∆ such that the following condition is satisfied,

∆ ≥ 3(wi/gi)2, i ∈ N . (18)
This assumption assumes that the platform’s accuracy require-
ment should not be too small relative to the ratio wi

gi
of a

worker. The rationale behind is that in the privacy-proactive
case, we may not be able to achieve as high accuracy of
aggregation results as in the privacy-passive case, since we can
not recruit workers with high skill levels (who can contribute
more in terms of result accuracy), but with too strict privacy
level requirements. We have the following lemma.

Lemma 3: The payment minimization problem (17) has a
feasible solution under Assumption 2.

Proof: Given the accuracy requirement introduced in (17),
we have

∑
i∈N wixi ≥

∑
i∈N wi − (∆/3)1/2. Under the

privacy constraint introduced in (17), we have
∑

i∈N wixi ≤∑
i∈N wi − wixi

gi
. When gi

wi
≥

√
3/∆ holds, it is easy to see

that we have,
∑

i∈N
wi − (∆/3)1/2 ≤

∑

i∈N
wi −

wi

gi
≤

∑

i∈N
wi −

wixi

gi

which concludes the proof. "

B. Mechanism Design

The incentive mechanism developed in Section 3 cannot
be directly applied in the privacy-proactive scenario due to
the additional constraints of workers’ privacy levels in (17).
Moreover, as both the unit privacy cost and privacy level
requirement are assumed to be private information known only
by the worker, each worker needs to submit a two-dimensional
bid, of which the value could deviate from the true value due
to workers’ strategic behaviors. Wet present an auction-based
incentive mechanism, namely enhanced differentially private
data auction (EDPDA), that addresses the new challenges.
Similar to the analysis conducted for the privacy-passive
scenario, we first show that the reformulated problem (17)
can be reduced to a reverse binary knapsack problem, and
then relax the integer variable condition to obtain a solvable
linear program based on the following Lemma 4.
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Lemma 4: The fractional relaxation of Problem (17) is
reducible to the following linear program:

minimize
∑

i∈N
biwiyi

subject to
∑

i∈N
wiyi ≥ Wz,

∑

j∈N
wjyj +

wi

gi
yi ≤

∑

j∈N
wjz, ∀i ∈ N ,

0 ≤ yi ≤ z, ∀i ∈ N ,∑

i∈N
wiz −

∑

i∈N
wiyi = 1, (19)

where W is as defined as in (14).
The proof of Lemma 4 is provided in the supplementary
material.

The set of winners are determined in a greedy manner
as described in Algorithm 4. Specifically, we first filter out
a set of k workers whose privacy level requirements are
guaranteed to be satisfied (line 4-5). Then we use the solution
to problem (19) as a budget target and follow the same
procedures that has been used in Algorithm 2 to filter out
winners without exhausting the budget target. The payment for
each winner i ∈ S is computed via Algorithm 3 introduced in
Section III.

Algorithm 4 Enhanced Differentially Private Data Auction:
Winner Determination
1: Input: worker set N , weight of each worker wi, ∀i ∈ N ,

bid of each worker {bi, gi}, ∀i ∈ N .
2: Output: winner set S.
3: Sort the workers in the increasing order of wi

gi
i ∈ N .

4: Find the largest integer k such that wk
gk

≤
∑N

i=k+1 wi, and
define the set S′ = {1, . . . , k}.

5: Resort the workers in S′ in the increasing order of
biwi, i ∈ S′.

6: Find the target cost C by solving problem (17).
7: Let l = 1, x1 = 1 and xi = 0, ∀i = 2, . . . , N .
8: Set S = {1} and compute C′ = b1ε1(x).
9: while C′ < C and l ≤ k do // Find the set of winners

10: l = l + 1.
11: Set xl = 1 and S = S ∪ {l}.
12: C′ =

∑l
i=1 biεi(x).

13: end while
14: return S.

C. Analysis of EDPDA

We next show that EDPDA is truthful, individually rational,
and meets the data privacy level requirements of all partici-
pated workers.

First, we analyze the truthfulness of EDPDA.
Theorem 5: EDPDA is truthful.

Proof: We show the truthfulness of EDPDA by discussing
the untruthful bidding behaviors regarding to the unit privacy
cost vi and the privacy constraint Ei separately. For the unit
privacy cost, the proof provided for Theorem 2 is sufficient

to show that bid deviation from workers’ true cost would not
bring utility gain. We here focus on the discussion on the
untruthfully bidding of workers’ privacy constraint.

• Overbidding g̃i > Ei. In this case, the ranking of worker i
after the execution of line 4 in Algorithm 4 may move
backward. If worker i is not within S′ via bidding the
true value of Ei, she will still be filtered out after moving
backward. If she is within S′ and remains in the set after
moving backward, she will be ranked for another time
regarding her unit privacy bid vi, which may affect her
final utility. Therefore, in either case, overbidding of Ei

would not bring benefits to the worker.
• Underbidding g̃i < Ei. In this case, the ranking of

worker i after the execution of line 4 in Algorithm 4
may move forward in the group. If she is already within
S′, moving forward would not affect her utility. If she is
not within S′ originally, moving forward may help her
win the auction, while her privacy constraint would be
violated, which is in contrast to her intend.

In summary, we conclude that EDPDA is truthful. "
The individual rationality of EDPDA can be proved by the
same procedure as for Theorem 3 given that the payment for
the winners are determined via Algorithm 3. Next, we show
that EDPDA guarantees that workers’ privacy constraints are
satisfied.

Theorem 6: EDPDA guarantees that participated workers’
privacy constraints are satisfied.

Proof: In Algorithm 4 (line 3-5), we first filter out a set
of workers S′ whose privacy constraints are guaranteed to
be satisfied, based on which we further determine the winner
set S ⊆ S′. Notice that the resorting of workers within S′

(line 6) and the following procedure would not violate the
privacy constraints. According to (11), for each winner i ∈ S,
we have

εi =
wi∑

j∈N\S wj
≤ wi∑

j∈N\S′ wj
≤ gi.

Since the truthfulness has been proved, we have εi ≤ Ei, ∀i ∈
S, i.e., each winner’s privacy constraint is satisfied under
EDPDA. "

The derivation of approximation ratio of the incentive
mechanism becomes much more challenging after we extend
the winner selection procedure in order to address workers’
intrinsic privacy requirements. We thus leave it to our future
work.

V. PERFORMANCE EVALUATION

A. Simulation Setup

In our simulation, we generate workers’ bids at random.
Specifically, the unit privacy costs are generated uniformly
from the interval [1, 20] and the data privacy level requirements
are generated uniformly from the interval [0.01, 0.2]. The
weights of workers are first generated uniformly at random
from the interval [1, 10] and then normalized. The number of
workers N varies from 100 to 300. The distortion is normal-
ized by some largest distortion ∆max such that W is always
positive under different distortions. The optimal solutions to
the problem (14) and (17) are calculated based on the bisection
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Fig. 2. Payments under different accuracy requirements (privacy-passive
case).

Fig. 3. Relationship between data privacy and the accuracy.

algorithm using the CPLEX optimization solver [33]. To the
best of our knowledge, as there are no auction mechanisms
for mobile crowdsensing allowing workers to report noisy
data while considering the externalities, we examine only
the performance of the DPDA algorithm and the EDPDA
algorithm we proposed in this paper.

B. Results and Discussions

Payment versus Accuracy. In Fig. 2, we illustrate the
payments under different accuracy requirements with different
total number of privacy-passive workers. We observe that as
the distortion level increases, the total payments decrease,
simply because W decreases as ∆ increases, i.e., the plat-
form does not need to purchase much privacy from workers.
Meanwhile, for the same level of distortion, the total payments
increase with the number of workers, because W increases
with the number of workers for the same level of distortion
based on (14), which requires the platform to select more
workers and thereby the total payments increase.

Privacy versus Accuracy. In Fig. 3, we illustrate the
relationship between the data privacy and the accuracy. As the
privacy of each worker is different, we use the maximum of
all the workers’ εi (ε = maxi∈S εi) to denote the privacy
protection level at the given distortion level. As expected,

as the distortion level increases, the data privacy level increases
(the smaller ε, the higher the privacy protection level), which
agrees with our analysis in Section II-D. The results clearly
show that privacy-proactive workers in general experience
higher privacy level than the privacy-passive workers, which
agrees with our expectation since privacy-proactive workers
have imposed customized privacy level requirement once enter
into the crowdsensing system.

Externalities. Fig. 4 illustrates the effect of externalities.
As discussed in Section III-A, the data privacy level of each
worker depends on other workers’ participations, and when the
number of workers changes, it would change workers’ privacy
levels. As the number of workers increases, the platform
needs to hire more workers to maintain the same distortion
level. Therefore, we can observe that the increase of total
payments and the number of winners as the worker set
enlarges. Fig. 4a clearly shows that the higher the distortion
level, the lower the total payment and the less the number of
winners.

In Fig. 4b, we show the comparison results of the
privacy-passive case and privacy-proactive case. We can see
that almost the same total payment has to be consumed in
the two cases given a fixed normalization distortion with
a fixed size of worker set, as W is not influenced by the
imposed privacy level requirement gi of each worker i ∈ N .
Moreover, we observe that the number of winners in the
privacy-proactive case is in general less than the number
of winners in the privacy-passive case. This is because the
additional requirement on privacy level renders a few workers
unqualified for being evolved into the private crowdsensing,
which leads to the shrink of worker set. Under the effect of
externality, the number of winners decreases.

Approximation. In Table I, we illustrate the performance
of the proposed DPDA algorithm and EDPDA algorithm
respectively by comparing their output total payment with the
optimal ones. For each N , we run 100 experiments and in each
experiment, we randomly generate the parameters as men-
tioned in Section V-A. Under different settings, we observe
that the total payments generated by these two algorithms are
very close to the optimal one and the maximal approximation
ratio for each case is around 2.

By comparison, DPDA algorithm outperforms EDPDA in
terms of the approximation ratio. This is because that in
the privacy-proactive scenario, the platform has to take into
account workers’ privacy level requirements in addition to the
objective of payment minimization. And the winner determina-
tion procedure of EDPDA algorithm decouples the two factors
by first filtering out workers whose privacy level requirements
are satisfied, then selecting out winners that optimize the
payment, instead of jointly considering both two factors while
choosing the winners.

To further validate the impact of “small bidder” effect,
we run the DPDA algorithm under the settings with different
values of maximal bid (bmax = 7, 10, 13, 16, 19) and number
of total workers (N = 200, 300, 400). As shown in Figure 5,
the approximation ratio of the DPDA algorithm is approaching
to 1 as bmax decreases in all three cases with different value
of N , which validates the conclusions in Corollary 1 that the
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Fig. 4. Effect of externalities.

TABLE I

APPROXIMATION RATIO OF THE DPDA AND EDPDA
(NORMALIZED DISTORTION = 0.2)

Fig. 5. The impact of the “small bidder” effect on the approximation ratio
of the DPDA algorithm.

DPDA can achieve a better performance as the “small bidder”
effect becomes more significant.

Truthfulness. In Fig. 6, we verify the truthfulness of the
proposed DPDA algorithm. We randomly select a winner and
a loser in the auction. We fix the bids of the other workers
and manipulate the selected worker’s bid to evaluate the utility.

Fig. 6. Truthfulness of the DPDA algorithm.

Fig. 7. Computational time of the DPDA algorithm under different settings.

Fig. 6 illustrates how the utility of the selected worker changes
with her bid. As we can see that no matter how the bid
changes, a winner or a loser cannot improve her utility and
that the best bidding strategy for a worker is to bid truthfully.

Computational Complexity. We next evaluate the com-
putational complexity of the proposed DPDA algorithm. For
each N , we examine the average running time of the algorithm

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on April 29,2021 at 18:23:12 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: PRIVACY-PRESERVING DATA AGGREGATION FOR MOBILE CROWDSENSING WITH EXTERNALITY 13

by running 100 experiments, in which the parameters are
randomly generated as mentioned in Section V-A. These
experiments are run on a PC with a 2.7 GHz Intel Core
i7 processor and 16 GB RAM. For the implementation of the
DPDA algorithm, we further improve the running efficiency
by executing line 4-6 of Algorithm 3 in a parallel manner,
so that the payments for the winners can be determined
concurrently. In Fig. 7, we can observe that the running time is
approximately linear to the network scale, which indicates that
the proposed DPDA algorithm can be of high time-efficiency
in practice.

VI. CONCLUSION

We studied privacy-preserving data aggregation for mobile
crowdsensing in an auction framework, where the platform
plays the role as an auctioneer to recruit workers to complete
a sensing task. Under this model, we designed a novel mobile
crowdsensing system by leveraging the concept of differential
privacy. Specifically, we designed a data aggregation that
allows each worker to report a noisy data and can guarantee
the use of each worker’s data in a differentially private manner.
Then, we designed a truthful, individual rational and compu-
tationally efficient incentive mechanism that can find a set
of workers to approximately minimize the cost of purchasing
the private sensing data from workers subject to the accuracy
requirement of the aggregated result. We then generalize our
results to a privacy-proactive scenario where workers could
gain more control of their perceived data privacy protection
level by beginning with bidding the lowest acceptable privacy
level. We validated the performance of our proposed DPDA
algorithm and EDPDA algorithm for the two scenarios through
theoretical analysis as well as extensive simulations.
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